aboutsummaryrefslogtreecommitdiff
path: root/src/unittest/test_collision.cpp
blob: 2f39c2489e20aaab59558a871ef73c382a24683b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "test.h"

#include "collision.h"

class TestCollision : public TestBase {
public:
	TestCollision() { TestManager::registerTestModule(this); }
	const char *getName() { return "TestCollision"; }

	void runTests(IGameDef *gamedef);

	void testAxisAlignedCollision();
};

static TestCollision g_test_instance;

void TestCollision::runTests(IGameDef *gamedef)
{
	TEST(testAxisAlignedCollision);
}

////////////////////////////////////////////////////////////////////////////////

void TestCollision::testAxisAlignedCollision()
{
	for (s16 bx = -3; bx <= 3; bx++)
	for (s16 by = -3; by <= 3; by++)
	for (s16 bz = -3; bz <= 3; bz++) {
		// X-
		{
			aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
			aabb3f m(bx-2, by, bz, bx-1, by+1, bz+1);
			v3f v(1, 0, 0);
			f32 dtime = 1.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == 0);
			UASSERT(fabs(dtime - 1.000) < 0.001);
		}
		{
			aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
			aabb3f m(bx-2, by, bz, bx-1, by+1, bz+1);
			v3f v(-1, 0, 0);
			f32 dtime = 1.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == -1);
		}
		{
			aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
			aabb3f m(bx-2, by+1.5, bz, bx-1, by+2.5, bz-1);
			v3f v(1, 0, 0);
			f32 dtime = 1.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == -1);
		}
		{
			aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
			aabb3f m(bx-2, by-1.5, bz, bx-1.5, by+0.5, bz+1);
			v3f v(0.5, 0.1, 0);
			f32 dtime = 3.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == 0);
			UASSERT(fabs(dtime - 3.000) < 0.001);
		}
		{
			aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
			aabb3f m(bx-2, by-1.5, bz, bx-1.5, by+0.5, bz+1);
			v3f v(0.5, 0.1, 0);
			f32 dtime = 3.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == 0);
			UASSERT(fabs(dtime - 3.000) < 0.001);
		}

		// X+
		{
			aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
			aabb3f m(bx+2, by, bz, bx+3, by+1, bz+1);
			v3f v(-1, 0, 0);
			f32 dtime = 1.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == 0);
			UASSERT(fabs(dtime - 1.000) < 0.001);
		}
		{
			aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
			aabb3f m(bx+2, by, bz, bx+3, by+1, bz+1);
			v3f v(1, 0, 0);
			f32 dtime = 1.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == -1);
		}
		{
			aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
			aabb3f m(bx+2, by, bz+1.5, bx+3, by+1, bz+3.5);
			v3f v(-1, 0, 0);
			f32 dtime = 1.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == -1);
		}
		{
			aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
			aabb3f m(bx+2, by-1.5, bz, bx+2.5, by-0.5, bz+1);
			v3f v(-0.5, 0.2, 0);
			f32 dtime = 2.5f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == 1);  // Y, not X!
			UASSERT(fabs(dtime - 2.500) < 0.001);
		}
		{
			aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
			aabb3f m(bx+2, by-1.5, bz, bx+2.5, by-0.5, bz+1);
			v3f v(-0.5, 0.3, 0);
			f32 dtime = 2.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == 0);
			UASSERT(fabs(dtime - 2.000) < 0.001);
		}

		// TODO: Y-, Y+, Z-, Z+

		// misc
		{
			aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
			aabb3f m(bx+2.3, by+2.29, bz+2.29, bx+4.2, by+4.2, bz+4.2);
			v3f v(-1./3, -1./3, -1./3);
			f32 dtime = 1.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == 0);
			UASSERT(fabs(dtime - 0.9) < 0.001);
		}
		{
			aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
			aabb3f m(bx+2.29, by+2.3, bz+2.29, bx+4.2, by+4.2, bz+4.2);
			v3f v(-1./3, -1./3, -1./3);
			f32 dtime = 1.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == 1);
			UASSERT(fabs(dtime - 0.9) < 0.001);
		}
		{
			aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
			aabb3f m(bx+2.29, by+2.29, bz+2.3, bx+4.2, by+4.2, bz+4.2);
			v3f v(-1./3, -1./3, -1./3);
			f32 dtime = 1.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == 2);
			UASSERT(fabs(dtime - 0.9) < 0.001);
		}
		{
			aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
			aabb3f m(bx-4.2, by-4.2, bz-4.2, bx-2.3, by-2.29, bz-2.29);
			v3f v(1./7, 1./7, 1./7);
			f32 dtime = 17.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == 0);
			UASSERT(fabs(dtime - 16.1) < 0.001);
		}
		{
			aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
			aabb3f m(bx-4.2, by-4.2, bz-4.2, bx-2.29, by-2.3, bz-2.29);
			v3f v(1./7, 1./7, 1./7);
			f32 dtime = 17.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == 1);
			UASSERT(fabs(dtime - 16.1) < 0.001);
		}
		{
			aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
			aabb3f m(bx-4.2, by-4.2, bz-4.2, bx-2.29, by-2.29, bz-2.3);
			v3f v(1./7, 1./7, 1./7);
			f32 dtime = 17.0f;
			UASSERT(axisAlignedCollision(s, m, v, &dtime) == 2);
			UASSERT(fabs(dtime - 16.1) < 0.001);
		}
	}
}
hl str">"mgv5_spflags", spflags, flagdesc_mapgen_v5, U32_MAX); settings->setNoiseParams("mgv5_np_filler_depth", np_filler_depth); settings->setNoiseParams("mgv5_np_factor", np_factor); settings->setNoiseParams("mgv5_np_height", np_height); settings->setNoiseParams("mgv5_np_cave1", np_cave1); settings->setNoiseParams("mgv5_np_cave2", np_cave2); settings->setNoiseParams("mgv5_np_ground", np_ground); } int MapgenV5::getGroundLevelAtPoint(v2s16 p) { //TimeTaker t("getGroundLevelAtPoint", NULL, PRECISION_MICRO); float f = 0.55 + NoisePerlin2D(&noise_factor->np, p.X, p.Y, seed); if (f < 0.01) f = 0.01; else if (f >= 1.0) f *= 1.6; float h = NoisePerlin2D(&noise_height->np, p.X, p.Y, seed); s16 search_start = 128; // Only bother searching this range, actual s16 search_end = -128; // ground level is rarely higher or lower. for (s16 y = search_start; y >= search_end; y--) { float n_ground = NoisePerlin3D(&noise_ground->np, p.X, y, p.Y, seed); // If solid if (n_ground * f > y - h) { // If either top 2 nodes of search are solid this is inside a // mountain or floatland with no space for the player to spawn. if (y >= search_start - 1) return MAX_MAP_GENERATION_LIMIT; else return y; // Ground below at least 2 nodes of space } } //printf("getGroundLevelAtPoint: %dus\n", t.stop()); return -MAX_MAP_GENERATION_LIMIT; } void MapgenV5::makeChunk(BlockMakeData *data) { // Pre-conditions assert(data->vmanip); assert(data->nodedef); assert(data->blockpos_requested.X >= data->blockpos_min.X && data->blockpos_requested.Y >= data->blockpos_min.Y && data->blockpos_requested.Z >= data->blockpos_min.Z); assert(data->blockpos_requested.X <= data->blockpos_max.X && data->blockpos_requested.Y <= data->blockpos_max.Y && data->blockpos_requested.Z <= data->blockpos_max.Z); generating = true; vm = data->vmanip; ndef = data->nodedef; //TimeTaker t("makeChunk"); v3s16 blockpos_min = data->blockpos_min; v3s16 blockpos_max = data->blockpos_max; node_min = blockpos_min * MAP_BLOCKSIZE; node_max = (blockpos_max + v3s16(1, 1, 1)) * MAP_BLOCKSIZE - v3s16(1, 1, 1); full_node_min = (blockpos_min - 1) * MAP_BLOCKSIZE; full_node_max = (blockpos_max + 2) * MAP_BLOCKSIZE - v3s16(1, 1, 1); // Create a block-specific seed blockseed = getBlockSeed2(full_node_min, seed); // Make some noise calculateNoise(); // Generate base terrain s16 stone_surface_max_y = generateBaseTerrain(); // Create heightmap updateHeightmap(node_min, node_max); // Create biomemap at heightmap surface bmgr->calcBiomes(csize.X, csize.Z, noise_heat->result, noise_humidity->result, heightmap, biomemap); // Actually place the biome-specific nodes MgStoneType stone_type = generateBiomes(noise_heat->result, noise_humidity->result); // Generate caves if ((flags & MG_CAVES) && (stone_surface_max_y >= node_min.Y)) generateCaves(stone_surface_max_y); // Generate dungeons and desert temples if ((flags & MG_DUNGEONS) && (stone_surface_max_y >= node_min.Y)) { DungeonParams dp; dp.np_rarity = nparams_dungeon_rarity; dp.np_density = nparams_dungeon_density; dp.np_wetness = nparams_dungeon_wetness; dp.c_water = c_water_source; if (stone_type == STONE) { dp.c_cobble = c_cobble; dp.c_moss = c_mossycobble; dp.c_stair = c_stair_cobble; dp.diagonal_dirs = false; dp.mossratio = 3.0; dp.holesize = v3s16(1, 2, 1); dp.roomsize = v3s16(0, 0, 0); dp.notifytype = GENNOTIFY_DUNGEON; } else if (stone_type == DESERT_STONE) { dp.c_cobble = c_desert_stone; dp.c_moss = c_desert_stone; dp.c_stair = c_desert_stone; dp.diagonal_dirs = true; dp.mossratio = 0.0; dp.holesize = v3s16(2, 3, 2); dp.roomsize = v3s16(2, 5, 2); dp.notifytype = GENNOTIFY_TEMPLE; } else if (stone_type == SANDSTONE) { dp.c_cobble = c_sandstonebrick; dp.c_moss = c_sandstonebrick; dp.c_stair = c_sandstonebrick; dp.diagonal_dirs = false; dp.mossratio = 0.0; dp.holesize = v3s16(2, 2, 2); dp.roomsize = v3s16(2, 0, 2); dp.notifytype = GENNOTIFY_DUNGEON; } DungeonGen dgen(this, &dp); dgen.generate(blockseed, full_node_min, full_node_max); } // Generate the registered decorations m_emerge->decomgr->placeAllDecos(this, blockseed, node_min, node_max); // Generate the registered ores m_emerge->oremgr->placeAllOres(this, blockseed, node_min, node_max); // Sprinkle some dust on top after everything else was generated dustTopNodes(); //printf("makeChunk: %dms\n", t.stop()); // Add top and bottom side of water to transforming_liquid queue updateLiquid(&data->transforming_liquid, full_node_min, full_node_max); // Calculate lighting if (flags & MG_LIGHT) { calcLighting(node_min - v3s16(0, 1, 0), node_max + v3s16(0, 1, 0), full_node_min, full_node_max); } this->generating = false; } void MapgenV5::calculateNoise() { //TimeTaker t("calculateNoise", NULL, PRECISION_MICRO); int x = node_min.X; int y = node_min.Y - 1; int z = node_min.Z; noise_factor->perlinMap2D(x, z); noise_height->perlinMap2D(x, z); noise_ground->perlinMap3D(x, y, z); if (flags & MG_CAVES) { noise_cave1->perlinMap3D(x, y, z); noise_cave2->perlinMap3D(x, y, z); } noise_filler_depth->perlinMap2D(x, z); noise_heat->perlinMap2D(x, z); noise_humidity->perlinMap2D(x, z); noise_heat_blend->perlinMap2D(x, z); noise_humidity_blend->perlinMap2D(x, z); for (s32 i = 0; i < csize.X * csize.Z; i++) { noise_heat->result[i] += noise_heat_blend->result[i]; noise_humidity->result[i] += noise_humidity_blend->result[i]; } heatmap = noise_heat->result; humidmap = noise_humidity->result; //printf("calculateNoise: %dus\n", t.stop()); } //bool is_cave(u32 index) { // double d1 = contour(noise_cave1->result[index]); // double d2 = contour(noise_cave2->result[index]); // return d1*d2 > CAVE_NOISE_THRESHOLD; //} //bool val_is_ground(v3s16 p, u32 index, u32 index2d) { // double f = 0.55 + noise_factor->result[index2d]; // if(f < 0.01) // f = 0.01; // else if(f >= 1.0) // f *= 1.6; // double h = WATER_LEVEL + 10 * noise_height->result[index2d]; // return (noise_ground->result[index] * f > (double)p.Y - h); //} int MapgenV5::generateBaseTerrain() { u32 index = 0; u32 index2d = 0; int stone_surface_max_y = -MAX_MAP_GENERATION_LIMIT; for (s16 z=node_min.Z; z<=node_max.Z; z++) { for (s16 y=node_min.Y - 1; y<=node_max.Y + 1; y++) { u32 i = vm->m_area.index(node_min.X, y, z); for (s16 x=node_min.X; x<=node_max.X; x++, i++, index++, index2d++) { if (vm->m_data[i].getContent() != CONTENT_IGNORE) continue; float f = 0.55 + noise_factor->result[index2d]; if (f < 0.01) f = 0.01; else if (f >= 1.0) f *= 1.6; float h = noise_height->result[index2d]; if (noise_ground->result[index] * f < y - h) { if (y <= water_level) vm->m_data[i] = MapNode(c_water_source); else vm->m_data[i] = MapNode(CONTENT_AIR); } else { vm->m_data[i] = MapNode(c_stone); if (y > stone_surface_max_y) stone_surface_max_y = y; } } index2d -= ystride; } index2d += ystride; } return stone_surface_max_y; } MgStoneType MapgenV5::generateBiomes(float *heat_map, float *humidity_map) { v3s16 em = vm->m_area.getExtent(); u32 index = 0; MgStoneType stone_type = STONE; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { Biome *biome = NULL; u16 depth_top = 0; u16 base_filler = 0; u16 depth_water_top = 0; u32 vi = vm->m_area.index(x, node_max.Y, z); // Check node at base of mapchunk above, either a node of a previously // generated mapchunk or if not, a node of overgenerated base terrain. content_t c_above = vm->m_data[vi + em.X].getContent(); bool air_above = c_above == CONTENT_AIR; bool water_above = c_above == c_water_source; // If there is air or water above enable top/filler placement, otherwise force // nplaced to stone level by setting a number exceeding any possible filler depth. u16 nplaced = (air_above || water_above) ? 0 : U16_MAX; for (s16 y = node_max.Y; y >= node_min.Y; y--) { content_t c = vm->m_data[vi].getContent(); // Biome is recalculated each time an upper surface is detected while // working down a column. The selected biome then remains in effect for // all nodes below until the next surface and biome recalculation. // Biome is recalculated: // 1. At the surface of stone below air or water. // 2. At the surface of water below air. // 3. When stone or water is detected but biome has not yet been calculated. if ((c == c_stone && (air_above || water_above || !biome)) || (c == c_water_source && (air_above || !biome))) { biome = bmgr->getBiome(heat_map[index], humidity_map[index], y); depth_top = biome->depth_top; base_filler = MYMAX(depth_top + biome->depth_filler + noise_filler_depth->result[index], 0); depth_water_top = biome->depth_water_top; // Detect stone type for dungeons during every biome calculation. // This is more efficient than detecting per-node and will not // miss any desert stone or sandstone biomes. if (biome->c_stone == c_desert_stone) stone_type = DESERT_STONE; else if (biome->c_stone == c_sandstone) stone_type = SANDSTONE; } if (c == c_stone) { content_t c_below = vm->m_data[vi - em.X].getContent(); // If the node below isn't solid, make this node stone, so that // any top/filler nodes above are structurally supported. // This is done by aborting the cycle of top/filler placement // immediately by forcing nplaced to stone level. if (c_below == CONTENT_AIR || c_below == c_water_source) nplaced = U16_MAX; if (nplaced < depth_top) { vm->m_data[vi] = MapNode(biome->c_top); nplaced++; } else if (nplaced < base_filler) { vm->m_data[vi] = MapNode(biome->c_filler); nplaced++; } else { vm->m_data[vi] = MapNode(biome->c_stone); } air_above = false; water_above = false; } else if (c == c_water_source) { vm->m_data[vi] = MapNode((y > (s32)(water_level - depth_water_top)) ? biome->c_water_top : biome->c_water); nplaced = 0; // Enable top/filler placement for next surface air_above = false; water_above = true; } else if (c == CONTENT_AIR) { nplaced = 0; // Enable top/filler placement for next surface air_above = true; water_above = false; } else { // Possible various nodes overgenerated from neighbouring mapchunks nplaced = U16_MAX; // Disable top/filler placement air_above = false; water_above = false; } vm->m_area.add_y(em, vi, -1); } } return stone_type; } void MapgenV5::generateCaves(int max_stone_y) { if (max_stone_y >= node_min.Y) { u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { u32 i = vm->m_area.index(node_min.X, y, z); for (s16 x = node_min.X; x <= node_max.X; x++, i++, index++) { float d1 = contour(noise_cave1->result[index]); float d2 = contour(noise_cave2->result[index]); if (d1*d2 > 0.125) { content_t c = vm->m_data[i].getContent(); if (!ndef->get(c).is_ground_content || c == CONTENT_AIR) continue; vm->m_data[i] = MapNode(CONTENT_AIR); } } } } if (node_max.Y > MGV5_LARGE_CAVE_DEPTH) return; PseudoRandom ps(blockseed + 21343); u32 bruises_count = (ps.range(1, 4) == 1) ? ps.range(1, 2) : 0; for (u32 i = 0; i < bruises_count; i++) { CaveV5 cave(this, &ps); cave.makeCave(node_min, node_max, max_stone_y); } } void MapgenV5::dustTopNodes() { if (node_max.Y < water_level) return; v3s16 em = vm->m_area.getExtent(); u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { Biome *biome = (Biome *)bmgr->getRaw(biomemap[index]); if (biome->c_dust == CONTENT_IGNORE) continue; u32 vi = vm->m_area.index(x, full_node_max.Y, z); content_t c_full_max = vm->m_data[vi].getContent(); s16 y_start; if (c_full_max == CONTENT_AIR) { y_start = full_node_max.Y - 1; } else if (c_full_max == CONTENT_IGNORE) { vi = vm->m_area.index(x, node_max.Y + 1, z); content_t c_max = vm->m_data[vi].getContent(); if (c_max == CONTENT_AIR) y_start = node_max.Y; else continue; } else { continue; } vi = vm->m_area.index(x, y_start, z); for (s16 y = y_start; y >= node_min.Y - 1; y--) { if (vm->m_data[vi].getContent() != CONTENT_AIR) break; vm->m_area.add_y(em, vi, -1); } content_t c = vm->m_data[vi].getContent(); if (!ndef->get(c).buildable_to && c != CONTENT_IGNORE && c != biome->c_dust) { vm->m_area.add_y(em, vi, 1);