aboutsummaryrefslogtreecommitdiff
path: root/src/unittest/test_keycode.cpp
blob: dd3d75a5bb16f79aeca8f0f0eb63deeca00f2c90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/*
Minetest
Copyright (C) 2016 sfan5 <sfan5@live.de>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "test.h"

#include <string>
#include "exceptions.h"
#include "keycode.h"

class TestKeycode : public TestBase {
public:
	TestKeycode() { TestManager::registerTestModule(this); }
	const char *getName() { return "TestKeycode"; }

	void runTests(IGameDef *gamedef);

	void testCreateFromString();
	void testCreateFromSKeyInput();
	void testCompare();
};

static TestKeycode g_test_instance;

void TestKeycode::runTests(IGameDef *gamedef)
{
	TEST(testCreateFromString);
	TEST(testCreateFromSKeyInput);
	TEST(testCompare);
}

////////////////////////////////////////////////////////////////////////////////

#define UASSERTEQ_STR(one, two) UASSERT(strcmp(one, two) == 0)

void TestKeycode::testCreateFromString()
{
	KeyPress k;

	// Character key, from char
	k = KeyPress("R");
	UASSERTEQ_STR(k.sym(), "KEY_KEY_R");
	UASSERTCMP(int, >, strlen(k.name()), 0); // should have human description

	// Character key, from identifier
	k = KeyPress("KEY_KEY_B");
	UASSERTEQ_STR(k.sym(), "KEY_KEY_B");
	UASSERTCMP(int, >, strlen(k.name()), 0);

	// Non-Character key, from identifier
	k = KeyPress("KEY_UP");
	UASSERTEQ_STR(k.sym(), "KEY_UP");
	UASSERTCMP(int, >, strlen(k.name()), 0);

	k = KeyPress("KEY_F6");
	UASSERTEQ_STR(k.sym(), "KEY_F6");
	UASSERTCMP(int, >, strlen(k.name()), 0);

	// Irrlicht-unknown key, from char
	k = KeyPress("/");
	UASSERTEQ_STR(k.sym(), "/");
	UASSERTCMP(int, >, strlen(k.name()), 0);
}

void TestKeycode::testCreateFromSKeyInput()
{
	KeyPress k;
	irr::SEvent::SKeyInput in;

	// Character key
	in.Key = irr::KEY_KEY_3;
	in.Char = L'3';
	k = KeyPress(in);
	UASSERTEQ_STR(k.sym(), "KEY_KEY_3");

	// Non-Character key
	in.Key = irr::KEY_RSHIFT;
	in.Char = L'\0';
	k = KeyPress(in);
	UASSERTEQ_STR(k.sym(), "KEY_RSHIFT");

	// Irrlicht-unknown key
	in.Key = irr::KEY_KEY_CODES_COUNT;
	in.Char = L'?';
	k = KeyPress(in);
	UASSERTEQ_STR(k.sym(), "?");

	// prefer_character mode
	in.Key = irr::KEY_COMMA;
	in.Char = L'G';
	k = KeyPress(in, true);
	UASSERTEQ_STR(k.sym(), "KEY_KEY_G");
}

void TestKeycode::testCompare()
{
	// Basic comparison
	UASSERT(KeyPress("5") == KeyPress("KEY_KEY_5"));
	UASSERT(!(KeyPress("5") == KeyPress("KEY_NUMPAD_5")));

	// Matching char suffices
	// note: This is a real-world example, Irrlicht maps XK_equal to irr::KEY_PLUS on Linux
	irr::SEvent::SKeyInput in;
	in.Key = irr::KEY_PLUS;
	in.Char = L'=';
	UASSERT(KeyPress("=") == KeyPress(in));

	// Matching keycode suffices
	irr::SEvent::SKeyInput in2;
	in.Key = in2.Key = irr::KEY_OEM_CLEAR;
	in.Char = L'\0';
	in2.Char = L';';
	UASSERT(KeyPress(in) == KeyPress(in2));
}
hl opt">.opaque = Z_NULL; ret = deflateInit(&z, level); if(ret != Z_OK) throw SerializationError("compressZlib: deflateInit failed"); // Point zlib to our input buffer z.next_in = (Bytef*)&data[0]; z.avail_in = data_size; // And get all output for(;;) { z.next_out = (Bytef*)output_buffer; z.avail_out = bufsize; status = deflate(&z, Z_FINISH); if(status == Z_NEED_DICT || status == Z_DATA_ERROR || status == Z_MEM_ERROR) { zerr(status); throw SerializationError("compressZlib: deflate failed"); } int count = bufsize - z.avail_out; if(count) os.write(output_buffer, count); // This determines zlib has given all output if(status == Z_STREAM_END) break; } deflateEnd(&z); } void compressZlib(const std::string &data, std::ostream &os, int level) { compressZlib((u8*)data.c_str(), data.size(), os, level); } void decompressZlib(std::istream &is, std::ostream &os, size_t limit) { z_stream z; const s32 bufsize = 16384; char input_buffer[bufsize]; char output_buffer[bufsize]; int status = 0; int ret; int bytes_written = 0; int input_buffer_len = 0; z.zalloc = Z_NULL; z.zfree = Z_NULL; z.opaque = Z_NULL; ret = inflateInit(&z); if(ret != Z_OK) throw SerializationError("dcompressZlib: inflateInit failed"); z.avail_in = 0; for(;;) { int output_size = bufsize; z.next_out = (Bytef*)output_buffer; z.avail_out = output_size; if (limit) { int limit_remaining = limit - bytes_written; if (limit_remaining <= 0) { // we're aborting ahead of time - throw an error? break; } if (limit_remaining < output_size) { z.avail_out = output_size = limit_remaining; } } if(z.avail_in == 0) { z.next_in = (Bytef*)input_buffer; is.read(input_buffer, bufsize); input_buffer_len = is.gcount(); z.avail_in = input_buffer_len; } if(z.avail_in == 0) { break; } status = inflate(&z, Z_NO_FLUSH); if(status == Z_NEED_DICT || status == Z_DATA_ERROR || status == Z_MEM_ERROR) { zerr(status); throw SerializationError("decompressZlib: inflate failed"); } int count = output_size - z.avail_out; if(count) os.write(output_buffer, count); bytes_written += count; if(status == Z_STREAM_END) { // Unget all the data that inflate didn't take is.clear(); // Just in case EOF is set for(u32 i=0; i < z.avail_in; i++) { is.unget(); if(is.fail() || is.bad()) { dstream<<"unget #"<<i<<" failed"<<std::endl; dstream<<"fail="<<is.fail()<<" bad="<<is.bad()<<std::endl; throw SerializationError("decompressZlib: unget failed"); } } break; } } inflateEnd(&z); } struct ZSTD_Deleter { void operator() (ZSTD_CStream* cstream) { ZSTD_freeCStream(cstream); } void operator() (ZSTD_DStream* dstream) { ZSTD_freeDStream(dstream); } }; void compressZstd(const u8 *data, size_t data_size, std::ostream &os, int level) { // reusing the context is recommended for performance // it will be destroyed when the thread ends thread_local std::unique_ptr<ZSTD_CStream, ZSTD_Deleter> stream(ZSTD_createCStream()); ZSTD_initCStream(stream.get(), level); const size_t bufsize = 16384; char output_buffer[bufsize]; ZSTD_inBuffer input = { data, data_size, 0 }; ZSTD_outBuffer output = { output_buffer, bufsize, 0 }; while (input.pos < input.size) { size_t ret = ZSTD_compressStream(stream.get(), &output, &input); if (ZSTD_isError(ret)) { dstream << ZSTD_getErrorName(ret) << std::endl; throw SerializationError("compressZstd: failed"); } if (output.pos) { os.write(output_buffer, output.pos); output.pos = 0; } } size_t ret; do { ret = ZSTD_endStream(stream.get(), &output); if (ZSTD_isError(ret)) { dstream << ZSTD_getErrorName(ret) << std::endl; throw SerializationError("compressZstd: failed"); } if (output.pos) { os.write(output_buffer, output.pos); output.pos = 0; } } while (ret != 0); } void compressZstd(const std::string &data, std::ostream &os, int level) { compressZstd((u8*)data.c_str(), data.size(), os, level); } void decompressZstd(std::istream &is, std::ostream &os) { // reusing the context is recommended for performance // it will be destroyed when the thread ends thread_local std::unique_ptr<ZSTD_DStream, ZSTD_Deleter> stream(ZSTD_createDStream()); ZSTD_initDStream(stream.get()); const size_t bufsize = 16384; char output_buffer[bufsize]; char input_buffer[bufsize]; ZSTD_outBuffer output = { output_buffer, bufsize, 0 }; ZSTD_inBuffer input = { input_buffer, 0, 0 }; size_t ret; do { if (input.size == input.pos) { is.read(input_buffer, bufsize); input.size = is.gcount(); input.pos = 0; } ret = ZSTD_decompressStream(stream.get(), &output, &input); if (ZSTD_isError(ret)) { dstream << ZSTD_getErrorName(ret) << std::endl; throw SerializationError("decompressZstd: failed"); } if (output.pos) { os.write(output_buffer, output.pos); output.pos = 0; } } while (ret != 0); // Unget all the data that ZSTD_decompressStream didn't take is.clear(); // Just in case EOF is set for (u32 i = 0; i < input.size - input.pos; i++) { is.unget(); if (is.fail() || is.bad()) throw SerializationError("decompressZstd: unget failed"); } } void compress(u8 *data, u32 size, std::ostream &os, u8 version, int level) { if(version >= 29) { // map the zlib levels [0,9] to [1,10]. -1 becomes 0 which indicates the default (currently 3) compressZstd(data, size, os, level + 1); return; } if(version >= 11) { compressZlib(data, size, os, level); return; } if(size == 0) return; // Write length (u32) u8 tmp[4]; writeU32(tmp, size); os.write((char*)tmp, 4); // We will be writing 8-bit pairs of more_count and byte u8 more_count = 0; u8 current_byte = data[0]; for(u32 i=1; i<size; i++) { if( data[i] != current_byte || more_count == 255 ) { // write count and byte os.write((char*)&more_count, 1); os.write((char*)&current_byte, 1); more_count = 0; current_byte = data[i]; } else { more_count++; } } // write count and byte os.write((char*)&more_count, 1); os.write((char*)&current_byte, 1); } void compress(const SharedBuffer<u8> &data, std::ostream &os, u8 version, int level)