1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
|
/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#pragma once
#include "../irrlichttypes_bloated.h"
#include "../exceptions.h" // for SerializationError
#include "../debug.h" // for assert
#include "config.h"
#if HAVE_ENDIAN_H
#ifdef _WIN32
#define __BYTE_ORDER 0
#define __LITTLE_ENDIAN 0
#define __BIG_ENDIAN 1
#elif defined(__MACH__) && defined(__APPLE__)
#include <machine/endian.h>
#elif defined(__FreeBSD__)
#include <sys/endian.h>
#else
#include <endian.h>
#endif
#endif
#include <string.h> // for memcpy
#include <iostream>
#include <string>
#include <vector>
#define FIXEDPOINT_FACTOR 1000.0f
// 0x7FFFFFFF / 1000.0f is not serializable.
// The limited float precision at this magnitude may cause the result to round
// to a greater value than can be represented by a 32 bit integer when increased
// by a factor of FIXEDPOINT_FACTOR. As a result, [F1000_MIN..F1000_MAX] does
// not represent the full range, but rather the largest safe range, of values on
// all supported architectures. Note: This definition makes assumptions on
// platform float-to-int conversion behavior.
#define F1000_MIN ((float)(s32)((-0x7FFFFFFF - 1) / FIXEDPOINT_FACTOR))
#define F1000_MAX ((float)(s32)((0x7FFFFFFF) / FIXEDPOINT_FACTOR))
#define STRING_MAX_LEN 0xFFFF
#define WIDE_STRING_MAX_LEN 0xFFFF
// 64 MB ought to be enough for anybody - Billy G.
#define LONG_STRING_MAX_LEN (64 * 1024 * 1024)
#if HAVE_ENDIAN_H
// use machine native byte swapping routines
// Note: memcpy below is optimized out by modern compilers
inline u16 readU16(const u8 *data)
{
u16 val;
memcpy(&val, data, 2);
return be16toh(val);
}
inline u32 readU32(const u8 *data)
{
u32 val;
memcpy(&val, data, 4);
return be32toh(val);
}
inline u64 readU64(const u8 *data)
{
u64 val;
memcpy(&val, data, 8);
return be64toh(val);
}
inline void writeU16(u8 *data, u16 i)
{
u16 val = htobe16(i);
memcpy(data, &val, 2);
}
inline void writeU32(u8 *data, u32 i)
{
u32 val = htobe32(i);
memcpy(data, &val, 4);
}
inline void writeU64(u8 *data, u64 i)
{
u64 val = htobe64(i);
memcpy(data, &val, 8);
}
#else
// generic byte-swapping implementation
inline u16 readU16(const u8 *data)
{
return
((u16)data[0] << 8) | ((u16)data[1] << 0);
}
inline u32 readU32(const u8 *data)
{
return
((u32)data[0] << 24) | ((u32)data[1] << 16) |
((u32)data[2] << 8) | ((u32)data[3] << 0);
}
inline u64 readU64(const u8 *data)
{
return
((u64)data[0] << 56) | ((u64)data[1] << 48) |
((u64)data[2] << 40) | ((u64)data[3] << 32) |
((u64)data[4] << 24) | ((u64)data[5] << 16) |
((u64)data[6] << 8) | ((u64)data[7] << 0);
}
inline void writeU16(u8 *data, u16 i)
{
data[0] = (i >> 8) & 0xFF;
data[1] = (i >> 0) & 0xFF;
}
inline void writeU32(u8 *data, u32 i)
{
data[0] = (i >> 24) & 0xFF;
data[1] = (i >> 16) & 0xFF;
data[2] = (i >> 8) & 0xFF;
data[3] = (i >> 0) & 0xFF;
}
inline void writeU64(u8 *data, u64 i)
{
data[0] = (i >> 56) & 0xFF;
data[1] = (i >> 48) & 0xFF;
data[2] = (i >> 40) & 0xFF;
data[3] = (i >> 32) & 0xFF;
data[4] = (i >> 24) & 0xFF;
data[5] = (i >> 16) & 0xFF;
data[6] = (i >> 8) & 0xFF;
data[7] = (i >> 0) & 0xFF;
}
#endif // HAVE_ENDIAN_H
//////////////// read routines ////////////////
inline u8 readU8(const u8 *data)
{
return ((u8)data[0] << 0);
}
inline s8 readS8(const u8 *data)
{
return (s8)readU8(data);
}
inline s16 readS16(const u8 *data)
{
return (s16)readU16(data);
}
inline s32 readS32(const u8 *data)
{
return (s32)readU32(data);
}
inline s64 readS64(const u8 *data)
{
return (s64)readU64(data);
}
inline f32 readF1000(const u8 *data)
{
return (f32)readS32(data) / FIXEDPOINT_FACTOR;
}
inline video::SColor readARGB8(const u8 *data)
{
video::SColor p(readU32(data));
return p;
}
inline v2s16 readV2S16(const u8 *data)
{
v2s16 p;
p.X = readS16(&data[0]);
p.Y = readS16(&data[2]);
return p;
}
inline v3s16 readV3S16(const u8 *data)
{
v3s16 p;
p.X = readS16(&data[0]);
p.Y = readS16(&data[2]);
p.Z = readS16(&data[4]);
return p;
}
inline v2s32 readV2S32(const u8 *data)
{
v2s32 p;
p.X = readS32(&data[0]);
p.Y = readS32(&data[4]);
return p;
}
inline v3s32 readV3S32(const u8 *data)
{
v3s32 p;
p.X = readS32(&data[0]);
p.Y = readS32(&data[4]);
p.Z = readS32(&data[8]);
return p;
}
inline v2f readV2F1000(const u8 *data)
{
v2f p;
p.X = (float)readF1000(&data[0]);
p.Y = (float)readF1000(&data[4]);
return p;
}
inline v3f readV3F1000(const u8 *data)
{
v3f p;
p.X = (float)readF1000(&data[0]);
p.Y = (float)readF1000(&data[4]);
p.Z = (float)readF1000(&data[8]);
return p;
}
/////////////// write routines ////////////////
inline void writeU8(u8 *data, u8 i)
{
data[0] = (i >> 0) & 0xFF;
}
inline void writeS8(u8 *data, s8 i)
{
writeU8(data, (u8)i);
}
inline void writeS16(u8 *data, s16 i)
{
writeU16(data, (u16)i);
}
inline void writeS32(u8 *data, s32 i)
{
writeU32(data, (u32)i);
}
inline void writeS64(u8 *data, s64 i)
{
writeU64(data, (u64)i);
}
inline void writeF1000(u8 *data, f32 i)
{
assert(i >= F1000_MIN && i <= F1000_MAX);
writeS32(data, i * FIXEDPOINT_FACTOR);
}
inline void writeARGB8(u8 *data, video::SColor p)
{
writeU32(data, p.color);
}
inline void writeV2S16(u8 *data, v2s16 p)
{
writeS16(&data[0], p.X);
writeS16(&data[2], p.Y);
}
inline void writeV3S16(u8 *data, v3s16 p)
{
writeS16(&data[0], p.X);
writeS16(&data[2], p.Y);
writeS16(&data[4], p.Z);
}
inline void writeV2S32(u8 *data, v2s32 p)
{
writeS32(&data[0], p.X);
writeS32(&data[4], p.Y);
}
inline void writeV3S32(u8 *data, v3s32 p)
{
writeS32(&data[0], p.X);
writeS32(&data[4], p.Y);
writeS32(&data[8], p.Z);
}
inline void writeV2F1000(u8 *data, v2f p)
{
writeF1000(&data[0], p.X);
writeF1000(&data[4], p.Y);
}
inline void writeV3F1000(u8 *data, v3f p)
{
writeF1000(&data[0], p.X);
writeF1000(&data[4], p.Y);
writeF1000(&data[8], p.Z);
}
////
//// Iostream wrapper for data read/write
////
#define MAKE_STREAM_READ_FXN(T, N, S) \
inline T read ## N(std::istream &is) \
{ \
char buf[S] = {0}; \
is.read(buf, sizeof(buf)); \
return read ## N((u8 *)buf); \
}
#define MAKE_STREAM_WRITE_FXN(T, N, S) \
inline void write ## N(std::ostream &os, T val) \
{ \
char buf[S]; \
write ## N((u8 *)buf, val); \
os.write(buf, sizeof(buf)); \
}
MAKE_STREAM_READ_FXN(u8, U8, 1);
MAKE_STREAM_READ_FXN(u16, U16, 2);
MAKE_STREAM_READ_FXN(u32, U32, 4);
MAKE_STREAM_READ_FXN(u64, U64, 8);
MAKE_STREAM_READ_FXN(s8, S8, 1);
MAKE_STREAM_READ_FXN(s16, S16, 2);
MAKE_STREAM_READ_FXN(s32, S32, 4);
MAKE_STREAM_READ_FXN(s64, S64, 8);
MAKE_STREAM_READ_FXN(f32, F1000, 4);
MAKE_STREAM_READ_FXN(v2s16, V2S16, 4);
MAKE_STREAM_READ_FXN(v3s16, V3S16, 6);
MAKE_STREAM_READ_FXN(v2s32, V2S32, 8);
MAKE_STREAM_READ_FXN(v3s32, V3S32, 12);
MAKE_STREAM_READ_FXN(v2f, V2F1000, 8);
MAKE_STREAM_READ_FXN(v3f, V3F1000, 12);
MAKE_STREAM_READ_FXN(video::SColor, ARGB8, 4);
MAKE_STREAM_WRITE_FXN(u8, U8, 1);
MAKE_STREAM_WRITE_FXN(u16, U16, 2);
MAKE_STREAM_WRITE_FXN(u32, U32, 4);
MAKE_STREAM_WRITE_FXN(u64, U64, 8);
MAKE_STREAM_WRITE_FXN(s8, S8, 1);
MAKE_STREAM_WRITE_FXN(s16, S16, 2);
MAKE_STREAM_WRITE_FXN(s32, S32, 4);
MAKE_STREAM_WRITE_FXN(s64, S64, 8);
MAKE_STREAM_WRITE_FXN(f32, F1000, 4);
MAKE_STREAM_WRITE_FXN(v2s16, V2S16, 4);
MAKE_STREAM_WRITE_FXN(v3s16, V3S16, 6);
MAKE_STREAM_WRITE_FXN(v2s32, V2S32, 8);
MAKE_STREAM_WRITE_FXN(v3s32, V3S32, 12);
MAKE_STREAM_WRITE_FXN(v2f, V2F1000, 8);
MAKE_STREAM_WRITE_FXN(v3f, V3F1000, 12);
MAKE_STREAM_WRITE_FXN(video::SColor, ARGB8, 4);
////
//// More serialization stuff
////
// Creates a string with the length as the first two bytes
std::string serializeString(const std::string &plain);
// Creates a string with the length as the first two bytes from wide string
std::string serializeWideString(const std::wstring &plain);
// Reads a string with the length as the first two bytes
std::string deSerializeString(std::istream &is);
// Reads a wide string with the length as the first two bytes
std::wstring deSerializeWideString(std::istream &is);
// Creates a string with the length as the first four bytes
std::string serializeLongString(const std::string &plain);
// Reads a string with the length as the first four bytes
std::string deSerializeLongString(std::istream &is);
// Creates a string encoded in JSON format (almost equivalent to a C string literal)
std::string serializeJsonString(const std::string &plain);
// Reads a string encoded in JSON format
std::string deSerializeJsonString(std::istream &is);
// If the string contains spaces, quotes or control characters, encodes as JSON.
// Else returns the string unmodified.
std::string serializeJsonStringIfNeeded(const std::string &s);
// Parses a string serialized by serializeJsonStringIfNeeded.
std::string deSerializeJsonStringIfNeeded(std::istream &is);
// Creates a string consisting of the hexadecimal representation of `data`
std::string serializeHexString(const std::string &data, bool insert_spaces=false);
// Creates a string containing comma delimited values of a struct whose layout is
// described by the parameter format
bool serializeStructToString(std::string *out,
std::string format, void *value);
// Reads a comma delimited string of values into a struct whose layout is
// decribed by the parameter format
bool deSerializeStringToStruct(std::string valstr,
std::string format, void *out, size_t olen);
////
//// BufReader
////
extern SerializationError eof_ser_err;
#define MAKE_BUFREADER_GETNOEX_FXN(T, N, S) \
inline bool get ## N ## NoEx(T *val) \
{ \
if (pos + S > size) \
return false; \
*val = read ## N(data + pos); \
pos += S; \
return true; \
}
#define MAKE_BUFREADER_GET_FXN(T, N) \
inline T get ## N() \
{ \
T val; \
if (!get ## N ## NoEx(&val)) \
throw eof_ser_err; \
return val; \
}
class BufReader {
public:
BufReader(const u8 *data_, size_t size_) :
data(data_),
size(size_)
{
}
MAKE_BUFREADER_GETNOEX_FXN(u8, U8, 1);
MAKE_BUFREADER_GETNOEX_FXN(u16, U16, 2);
MAKE_BUFREADER_GETNOEX_FXN(u32, U32, 4);
MAKE_BUFREADER_GETNOEX_FXN(u64, U64, 8);
MAKE_BUFREADER_GETNOEX_FXN(s8, S8, 1);
MAKE_BUFREADER_GETNOEX_FXN(s16, S16, 2);
MAKE_BUFREADER_GETNOEX_FXN(s32, S32, 4);
MAKE_BUFREADER_GETNOEX_FXN(s64, S64, 8);
MAKE_BUFREADER_GETNOEX_FXN(f32, F1000, 4);
MAKE_BUFREADER_GETNOEX_FXN(v2s16, V2S16, 4);
MAKE_BUFREADER_GETNOEX_FXN(v3s16, V3S16, 6);
MAKE_BUFREADER_GETNOEX_FXN(v2s32, V2S32, 8);
MAKE_BUFREADER_GETNOEX_FXN(v3s32, V3S32, 12);
MAKE_BUFREADER_GETNOEX_FXN(v2f, V2F1000, 8);
MAKE_BUFREADER_GETNOEX_FXN(v3f, V3F1000, 12);
MAKE_BUFREADER_GETNOEX_FXN(video::SColor, ARGB8, 4);
bool getStringNoEx(std::string *val);
bool getWideStringNoEx(std::wstring *val);
bool getLongStringNoEx(std::string *val);
bool getRawDataNoEx(void *data, size_t len);
MAKE_BUFREADER_GET_FXN(u8, U8);
MAKE_BUFREADER_GET_FXN(u16, U16);
MAKE_BUFREADER_GET_FXN(u32, U32);
MAKE_BUFREADER_GET_FXN(u64, U64);
MAKE_BUFREADER_GET_FXN(s8, S8);
MAKE_BUFREADER_GET_FXN(s16, S16);
MAKE_BUFREADER_GET_FXN(s32, S32);
MAKE_BUFREADER_GET_FXN(s64, S64);
MAKE_BUFREADER_GET_FXN(f32, F1000);
MAKE_BUFREADER_GET_FXN(v2s16, V2S16);
MAKE_BUFREADER_GET_FXN(v3s16, V3S16);
MAKE_BUFREADER_GET_FXN(v2s32, V2S32);
MAKE_BUFREADER_GET_FXN(v3s32, V3S32);
MAKE_BUFREADER_GET_FXN(v2f, V2F1000);
MAKE_BUFREADER_GET_FXN(v3f, V3F1000);
MAKE_BUFREADER_GET_FXN(video::SColor, ARGB8);
MAKE_BUFREADER_GET_FXN(std::string, String);
MAKE_BUFREADER_GET_FXN(std::wstring, WideString);
MAKE_BUFREADER_GET_FXN(std::string, LongString);
inline void getRawData(void *val, size_t len)
{
if (!getRawDataNoEx(val, len))
throw eof_ser_err;
}
inline size_t remaining()
{
assert(pos <= size);
return size - pos;
}
const u8 *data;
size_t size;
size_t pos = 0;
};
#undef MAKE_BUFREADER_GET_FXN
#undef MAKE_BUFREADER_GETNOEX_FXN
////
//// Vector-based write routines
////
inline void putU8(std::vector<u8> *dest, u8 val)
{
dest->push_back((val >> 0) & 0xFF);
}
inline void putU16(std::vector<u8> *dest, u16 val)
{
dest->push_back((val >> 8) & 0xFF);
dest->push_back((val >> 0) & 0xFF);
}
inline void putU32(std::vector<u8> *dest, u32 val)
{
dest->push_back((val >> 24) & 0xFF);
dest->push_back((val >> 16) & 0xFF);
dest->push_back((val >> 8) & 0xFF);
dest->push_back((val >> 0) & 0xFF);
}
inline void putU64(std::vector<u8> *dest, u64 val)
{
dest->push_back((val >> 56) & 0xFF);
dest->push_back((val >> 48) & 0xFF);
dest->push_back((val >> 40) & 0xFF);
dest->push_back((val >> 32) & 0xFF);
dest->push_back((val >> 24) & 0xFF);
dest->push_back((val >> 16) & 0xFF);
dest->push_back((val >> 8) & 0xFF);
dest->push_back((val >> 0) & 0xFF);
}
inline void putS8(std::vector<u8> *dest, s8 val)
{
putU8(dest, val);
}
inline void putS16(std::vector<u8> *dest, s16 val)
{
putU16(dest, val);
}
inline void putS32(std::vector<u8> *dest, s32 val)
{
putU32(dest, val);
}
inline void putS64(std::vector<u8> *dest, s64 val)
{
putU64(dest, val);
}
inline void putF1000(std::vector<u8> *dest, f32 val)
{
putS32(dest, val * FIXEDPOINT_FACTOR);
}
inline void putV2S16(std::vector<u8> *dest, v2s16 val)
{
putS16(dest, val.X);
putS16(dest, val.Y);
}
inline void putV3S16(std::vector<u8> *dest, v3s16 val)
{
putS16(dest, val.X);
putS16(dest, val.Y);
putS16(dest, val.Z);
}
inline void putV2S32(std::vector<u8> *dest, v2s32 val)
{
putS32(dest, val.X);
putS32(dest, val.Y);
}
inline void putV3S32(std::vector<u8> *dest, v3s32 val)
{
putS32(dest, val.X);
putS32(dest, val.Y);
putS32(dest, val.Z);
}
inline void putV2F1000(std::vector<u8> *dest, v2f val)
{
putF1000(dest, val.X);
putF1000(dest, val.Y);
}
inline void putV3F1000(std::vector<u8> *dest, v3f val)
{
putF1000(dest, val.X);
putF1000(dest, val.Y);
putF1000(dest, val.Z);
}
inline void putARGB8(std::vector<u8> *dest, video::SColor val)
{
putU32(dest, val.color);
}
inline void putString(std::vector<u8> *dest, const std::string &val)
{
if (val.size() > STRING_MAX_LEN)
throw SerializationError("String too long");
putU16(dest, val.size());
dest->insert(dest->end(), val.begin(), val.end());
}
inline void putWideString(std::vector<u8> *dest, const std::wstring &val)
{
if (val.size() > WIDE_STRING_MAX_LEN)
throw SerializationError("String too long");
putU16(dest, val.size());
for (size_t i = 0; i != val.size(); i++)
putU16(dest, val[i]);
}
inline void putLongString(std::vector<u8> *dest, const std::string &val)
{
if (val.size() > LONG_STRING_MAX_LEN)
throw SerializationError("String too long");
putU32(dest, val.size());
dest->insert(dest->end(), val.begin(), val.end());
}
inline void putRawData(std::vector<u8> *dest, const void *src, size_t len)
{
dest->insert(dest->end(), (u8 *)src, (u8 *)src + len);
}
|