aboutsummaryrefslogtreecommitdiff
path: root/src/util/thread.h
blob: 73e9beb806f44d8effc6dd8e3a3bec3f82adf23f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#pragma once

#include "irrlichttypes.h"
#include "threading/thread.h"
#include "threading/mutex_auto_lock.h"
#include "porting.h"
#include "log.h"
#include "container.h"

template<typename T>
class MutexedVariable
{
public:
	MutexedVariable(const T &value):
		m_value(value)
	{}

	T get()
	{
		MutexAutoLock lock(m_mutex);
		return m_value;
	}

	void set(const T &value)
	{
		MutexAutoLock lock(m_mutex);
		m_value = value;
	}

	// You pretty surely want to grab the lock when accessing this
	T m_value;
private:
	std::mutex m_mutex;
};

/*
	A single worker thread - multiple client threads queue framework.
*/
template<typename Key, typename T, typename Caller, typename CallerData>
class GetResult {
public:
	Key key;
	T item;
	std::pair<Caller, CallerData> caller;
};

template<typename Key, typename T, typename Caller, typename CallerData>
class ResultQueue : public MutexedQueue<GetResult<Key, T, Caller, CallerData> > {
};

template<typename Caller, typename Data, typename Key, typename T>
class CallerInfo {
public:
	Caller caller;
	Data data;
	ResultQueue<Key, T, Caller, Data> *dest;
};

template<typename Key, typename T, typename Caller, typename CallerData>
class GetRequest {
public:
	GetRequest() = default;
	~GetRequest() = default;

	GetRequest(const Key &a_key): key(a_key)
	{
	}

	Key key;
	std::list<CallerInfo<Caller, CallerData, Key, T> > callers;
};

/**
 * Notes for RequestQueue usage
 * @param Key unique key to identify a request for a specific resource
 * @param T ?
 * @param Caller unique id of calling thread
 * @param CallerData data passed back to caller
 */
template<typename Key, typename T, typename Caller, typename CallerData>
class RequestQueue {
public:
	bool empty()
	{
		return m_queue.empty();
	}

	void add(const Key &key, Caller caller, CallerData callerdata,
		ResultQueue<Key, T, Caller, CallerData> *dest)
	{
		typename std::deque<GetRequest<Key, T, Caller, CallerData> >::iterator i;
		typename std::list<CallerInfo<Caller, CallerData, Key, T> >::iterator j;

		{
			MutexAutoLock lock(m_queue.getMutex());

			/*
				If the caller is already on the list, only update CallerData
			*/
			for (i = m_queue.getQueue().begin(); i != m_queue.getQueue().end(); ++i) {
				GetRequest<Key, T, Caller, CallerData> &request = *i;
				if (request.key != key)
					continue;

				for (j = request.callers.begin(); j != request.callers.end(); ++j) {
					CallerInfo<Caller, CallerData, Key, T> &ca = *j;
					if (ca.caller == caller) {
						ca.data = callerdata;
						return;
					}
				}

				CallerInfo<Caller, CallerData, Key, T> ca;
				ca.caller = caller;
				ca.data = callerdata;
				ca.dest = dest;
				request.callers.push_back(ca);
				return;
			}
		}

		/*
			Else add a new request to the queue
		*/

		GetRequest<Key, T, Caller, CallerData> request;
		request.key = key;
		CallerInfo<Caller, CallerData, Key, T> ca;
		ca.caller = caller;
		ca.data = callerdata;
		ca.dest = dest;
		request.callers.push_back(ca);

		m_queue.push_back(request);
	}

	GetRequest<Key, T, Caller, CallerData> pop(unsigned int timeout_ms)
	{
		return m_queue.pop_front(timeout_ms);
	}

	GetRequest<Key, T, Caller, CallerData> pop()
	{
		return m_queue.pop_frontNoEx();
	}

	void pushResult(GetRequest<Key, T, Caller, CallerData> req, T res)
	{
		for (typename std::list<CallerInfo<Caller, CallerData, Key, T> >::iterator
				i = req.callers.begin();
				i != req.callers.end(); ++i) {
			CallerInfo<Caller, CallerData, Key, T> &ca = *i;

			GetResult<Key,T,Caller,CallerData> result;

			result.key = req.key;
			result.item = res;
			result.caller.first = ca.caller;
			result.caller.second = ca.data;

			ca.dest->push_back(result);
		}
	}

private:
	MutexedQueue<GetRequest<Key, T, Caller, CallerData> > m_queue;
};

class UpdateThread : public Thread
{
public:
	UpdateThread(const std::string &name) : Thread(name + "Update") {}
	~UpdateThread() = default;

	void deferUpdate() { m_update_sem.post(); }

	void stop()
	{
		Thread::stop();

		// give us a nudge
		m_update_sem.post();
	}

	void *run()
	{
		BEGIN_DEBUG_EXCEPTION_HANDLER

		while (!stopRequested()) {
			m_update_sem.wait();
			// Set semaphore to 0
			while (m_update_sem.wait(0));

			if (stopRequested()) break;

			doUpdate();
		}

		END_DEBUG_EXCEPTION_HANDLER

		return NULL;
	}

protected:
	virtual void doUpdate() = 0;

private:
	Semaphore m_update_sem;
};
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <cmath> #include "noise.h" #include <iostream> #include <cstring> // memset #include "debug.h" #include "util/numeric.h" #include "util/string.h" #include "exceptions.h" #define NOISE_MAGIC_X 1619 #define NOISE_MAGIC_Y 31337 #define NOISE_MAGIC_Z 52591 #define NOISE_MAGIC_SEED 1013 typedef float (*Interp2dFxn)( float v00, float v10, float v01, float v11, float x, float y); typedef float (*Interp3dFxn)( float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111, float x, float y, float z); FlagDesc flagdesc_noiseparams[] = { {"defaults", NOISE_FLAG_DEFAULTS}, {"eased", NOISE_FLAG_EASED}, {"absvalue", NOISE_FLAG_ABSVALUE}, {"pointbuffer", NOISE_FLAG_POINTBUFFER}, {"simplex", NOISE_FLAG_SIMPLEX}, {NULL, 0} }; /////////////////////////////////////////////////////////////////////////////// PcgRandom::PcgRandom(u64 state, u64 seq) { seed(state, seq); } void PcgRandom::seed(u64 state, u64 seq) { m_state = 0U; m_inc = (seq << 1u) | 1u; next(); m_state += state; next(); } u32 PcgRandom::next() { u64 oldstate = m_state; m_state = oldstate * 6364136223846793005ULL + m_inc; u32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u; u32 rot = oldstate >> 59u; return (xorshifted >> rot) | (xorshifted << ((-rot) & 31)); } u32 PcgRandom::range(u32 bound) { // If the bound is 0, we cover the whole RNG's range if (bound == 0) return next(); /* This is an optimization of the expression: 0x100000000ull % bound since 64-bit modulo operations typically much slower than 32. */ u32 threshold = -bound % bound; u32 r; /* If the bound is not a multiple of the RNG's range, it may cause bias, e.g. a RNG has a range from 0 to 3 and we take want a number 0 to 2. Using rand() % 3, the number 0 would be twice as likely to appear. With a very large RNG range, the effect becomes less prevalent but still present. This can be solved by modifying the range of the RNG to become a multiple of bound by dropping values above the a threshold. In our example, threshold == 4 % 3 == 1, so reject values < 1 (that is, 0), thus making the range == 3 with no bias. This loop may look dangerous, but will always terminate due to the RNG's property of uniformity. */ while ((r = next()) < threshold) ; return r % bound; } s32 PcgRandom::range(s32 min, s32 max) { if (max < min) throw PrngException("Invalid range (max < min)"); // We have to cast to s64 because otherwise this could overflow, // and signed overflow is undefined behavior. u32 bound = (s64)max - (s64)min + 1; return range(bound) + min; } void PcgRandom::bytes(void *out, size_t len) { u8 *outb = (u8 *)out; int bytes_left = 0; u32 r; while (len--) { if (bytes_left == 0) { bytes_left = sizeof(u32); r = next(); } *outb = r & 0xFF; outb++; bytes_left--; r >>= CHAR_BIT; } } s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials) { s32 accum = 0; for (int i = 0; i != num_trials; i++) accum += range(min, max); return myround((float)accum / num_trials); } /////////////////////////////////////////////////////////////////////////////// float noise2d(int x, int y, s32 seed) { unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_SEED * seed) & 0x7fffffff; n = (n >> 13) ^ n; n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff; return 1.f - (float)(int)n / 0x40000000; } float noise3d(int x, int y, int z, s32 seed) { unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z + NOISE_MAGIC_SEED * seed) & 0x7fffffff; n = (n >> 13) ^ n; n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff; return 1.f - (float)(int)n / 0x40000000; } inline float dotProduct(float vx, float vy, float wx, float wy) { return vx * wx + vy * wy; } inline float linearInterpolation(float v0, float v1, float t) { return v0 + (v1 - v0) * t; } inline float biLinearInterpolation( float v00, float v10, float v01, float v11, float x, float y) { float tx = easeCurve(x); float ty = easeCurve(y); float u = linearInterpolation(v00, v10, tx); float v = linearInterpolation(v01, v11, tx); return linearInterpolation(u, v, ty); } inline float biLinearInterpolationNoEase( float v00, float v10, float v01, float v11, float x, float y) { float u = linearInterpolation(v00, v10, x); float v = linearInterpolation(v01, v11, x); return linearInterpolation(u, v, y); } float triLinearInterpolation( float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111, float x, float y, float z) { float tx = easeCurve(x); float ty = easeCurve(y); float tz = easeCurve(z); float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty); float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty); return linearInterpolation(u, v, tz); } float triLinearInterpolationNoEase( float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111, float x, float y, float z) { float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y); float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y); return linearInterpolation(u, v, z); } float noise2d_gradient(float x, float y, s32 seed, bool eased) { // Calculate the integer coordinates int x0 = myfloor(x); int y0 = myfloor(y); // Calculate the remaining part of the coordinates float xl = x - (float)x0; float yl = y - (float)y0; // Get values for corners of square float v00 = noise2d(x0, y0, seed); float v10 = noise2d(x0+1, y0, seed); float v01 = noise2d(x0, y0+1, seed); float v11 = noise2d(x0+1, y0+1, seed); // Interpolate if (eased) return biLinearInterpolation(v00, v10, v01, v11, xl, yl); return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl); } float noise3d_gradient(float x, float y, float z, s32 seed, bool eased) { // Calculate the integer coordinates int x0 = myfloor(x); int y0 = myfloor(y); int z0 = myfloor(z); // Calculate the remaining part of the coordinates float xl = x - (float)x0; float yl = y - (float)y0; float zl = z - (float)z0; // Get values for corners of cube float v000 = noise3d(x0, y0, z0, seed); float v100 = noise3d(x0 + 1, y0, z0, seed); float v010 = noise3d(x0, y0 + 1, z0, seed); float v110 = noise3d(x0 + 1, y0 + 1, z0, seed); float v001 = noise3d(x0, y0, z0 + 1, seed); float v101 = noise3d(x0 + 1, y0, z0 + 1, seed); float v011 = noise3d(x0, y0 + 1, z0 + 1, seed); float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed); // Interpolate if (eased) { return triLinearInterpolation( v000, v100, v010, v110, v001, v101, v011, v111, xl, yl, zl); } return triLinearInterpolationNoEase( v000, v100, v010, v110, v001, v101, v011, v111, xl, yl, zl); } float noise2d_perlin(float x, float y, s32 seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * noise2d_gradient(x * f, y * f, seed + i, eased); f *= 2.0; g *= persistence; } return a; } float noise2d_perlin_abs(float x, float y, s32 seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * std::fabs(noise2d_gradient(x * f, y * f, seed + i, eased)); f *= 2.0; g *= persistence; } return a; } float noise3d_perlin(float x, float y, float z, s32 seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased); f *= 2.0; g *= persistence; } return a; } float noise3d_perlin_abs(float x, float y, float z, s32 seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * std::fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased)); f *= 2.0;