aboutsummaryrefslogtreecommitdiff
path: root/advtrains/trainlogic.lua
diff options
context:
space:
mode:
authororwell96 <orwell@bleipb.de>2021-01-02 19:38:38 +0100
committerorwell96 <orwell@bleipb.de>2021-02-10 16:39:46 +0100
commit4f7c1b1b5d5cdd4f6781ce115ab5110b05d8d13f (patch)
tree573a1d77ae041eb3144f2706cab0d6909934e4ef /advtrains/trainlogic.lua
parent8f4c90c5a53b531451436b8e0a1ea8a3b750110e (diff)
downloadadvtrains-4f7c1b1b5d5cdd4f6781ce115ab5110b05d8d13f.tar.gz
advtrains-4f7c1b1b5d5cdd4f6781ce115ab5110b05d8d13f.tar.bz2
advtrains-4f7c1b1b5d5cdd4f6781ce115ab5110b05d8d13f.zip
Rewrite movement logic again
Diffstat (limited to 'advtrains/trainlogic.lua')
-rw-r--r--advtrains/trainlogic.lua280
1 files changed, 137 insertions, 143 deletions
diff --git a/advtrains/trainlogic.lua b/advtrains/trainlogic.lua
index 3dd0e4d..b5f626c 100644
--- a/advtrains/trainlogic.lua
+++ b/advtrains/trainlogic.lua
@@ -349,27 +349,35 @@ function advtrains.train_step_b(id, train, dtime)
]]--
--- 3. handle velocity influences ---
- -- Variables for "desired velocities" of various parts of the code
- local v_targets = {} --Table keys: VLEVER_*
- local train_moves=(train.velocity~=0)
+ local v0 = train.velocity
+ local sit_v_cap = train.max_speed -- Maximum speed in current situation (multiple limit factors)
+ -- The desired speed change issued by the active control (user or atc)
+ local ctrl_v_tar -- desired speed which should not be crossed by braking or accelerating
+ local ctrl_accelerating = false -- whether the train should accelerate
+ local ctrl_braking = false -- whether the train should brake
+ local ctrl_lever -- the lever value to use to calculate the acceleration
+ -- the final speed change after applying LZB
+ local v_cap -- absolute maximum speed
+ local v_tar -- desired speed which should not be crossed by braking or accelerating
+ local accelerating = false-- whether the train should accelerate
+ local braking = false -- whether the train should brake
+ local lever -- the lever value to use to calculate the acceleration
+ local train_moves = (v0 > 0)
if train.recently_collided_with_env then
if not train_moves then
train.recently_collided_with_env=nil--reset status when stopped
end
atprint("in train_step_b: applying collided_with_env")
- v_target_apply(v_targets, VLEVER_EMERG, 0)
- end
- if train.locomotives_in_train==0 then
+ sit_v_cap = 0
+ elseif train.locomotives_in_train==0 then
atprint("in train_step_b: applying no_locomotives")
- v_target_apply(v_targets, VLEVER_ROLL, 0)
- end
-
+ sit_v_cap = 0
-- interlocking speed restriction
- if train.speed_restriction then
+ elseif train.speed_restriction then
atprint("in train_step_b: applying interlocking speed restriction",train.speed_restriction)
- v_target_apply(v_targets, VLEVER_BRAKE, train.speed_restriction)
+ sit_v_cap = train.speed_restriction
end
--apply off-track handling:
@@ -377,23 +385,27 @@ function advtrains.train_step_b(id, train, dtime)
local back_off_track=train.end_index<train.path_trk_b
train.off_track = front_off_track or back_off_track
- if back_off_track then
+ if back_off_track and (not v_cap or v_cap > 1) then
atprint("in train_step_b: applying back_off_track")
- v_target_apply(v_targets, VLEVER_EMERG, 1)
- else
- if front_off_track then
- atprint("in train_step_b: applying front_off_track")
- v_target_apply(v_targets, VLEVER_EMERG, 0)
- end
+ sit_v_cap = 1
+ elseif front_off_track then
+ atprint("in train_step_b: applying front_off_track")
+ sit_v_cap = 0
end
--interpret ATC command and apply auto-lever control when not actively controlled
- local v0 = train.velocity
-
- if train.ctrl_user then
- atprint("in train_step_b: ctrl_user active, resetting atc")
+ local userc = train.ctrl_user
+ if userc then
+ atprint("in train_step_b: ctrl_user active",userc)
advtrains.atc.train_reset_command(train)
+
+ if userc >= VLEVER_ACCEL then
+ ctrl_accelerating = true
+ else
+ ctrl_braking = true
+ end
+ ctrl_lever = userc
else
if train.atc_command then
if (not train.atc_delay or train.atc_delay<=0) and not train.atc_wait_finish then
@@ -428,161 +440,125 @@ function advtrains.train_step_b(id, train, dtime)
if train.tarvelocity and train.tarvelocity>v0 then
atprint("in train_step_b: applying ATC ACCEL", train.tarvelocity)
- v_target_apply(v_targets, VLEVER_ACCEL, train.tarvelocity)
- end
- if train.tarvelocity and train.tarvelocity<v0 then
+ ctrl_accelerating = true
+ ctrl_lever = VLEVER_ACCEL
+ elseif train.tarvelocity and train.tarvelocity<v0 then
+ ctrl_braking = true
+
if (braketar and braketar<v0) then
if emerg then
atprint("in train_step_b: applying ATC EMERG", train.tarvelocity)
- v_target_apply(v_targets, VLEVER_EMERG, 0)
+ ctrl_lever = VLEVER_EMERG
else
atprint("in train_step_b: applying ATC BRAKE", train.tarvelocity)
- v_target_apply(v_targets, VLEVER_BRAKE, braketar)
+ ctrl_v_tar = braketar
+ ctrl_lever = VLEVER_BRAKE
end
else
atprint("in train_step_b: applying ATC ROLL", train.tarvelocity)
- v_target_apply(v_targets, VLEVER_ROLL, train.tarvelocity)
+ ctrl_v_tar = train.tarvelocity
+ ctrl_lever = VLEVER_ROLL
end
end
end
- local userc = train.ctrl_user
- if userc then
- atprint("in train_step_b: applying user control", userc)
- v_target_apply(v_targets, userc, userc==VLEVER_ACCEL and train.max_speed or 0)
- end
-
--- 2b. look at v_target, determine the effective v_target and desired acceleration ---
- local tv_target, tv_lever
-
- if v_targets[VLEVER_ACCEL] then
- if v_targets[VLEVER_ACCEL] > v0 then
- tv_target = v_targets[VLEVER_ACCEL]
- tv_lever = VLEVER_ACCEL
- end
- end
- for _,lever in ipairs({VLEVER_ROLL, VLEVER_BRAKE, VLEVER_EMERG}) do
- if v_targets[lever] then
- if v_targets[lever] <= v0 then
- if not tv_target then
- tv_target = v_targets[lever]
- else
- tv_target = math.min(v_targets[lever], tv_target)
- end
- end
- if v_targets[lever] < v0 then
- tv_lever = lever
- end
- end
- end
- atprint("in train_step_b: Resulting control before LZB: lever", tv_lever, "target", tv_target)
+ atprint("in train_step_b: Resulting control before LZB: accelerating",ctrl_accelerating,"braking",ctrl_braking,"lever", ctrl_lever, "target", ctrl_v_tar)
--train.debug = dump({tv_target,tv_lever})
- --- 2c. If no tv_lever set, honor the user control ---
- local a_lever = tv_lever
- if not tv_lever then
- -- default to holding current speed
- a_lever = VLEVER_HOLD
- end
-
- train.lever = a_lever
-
- atprint("in train_step_b: Current index",train.index,"end",train.end_index,"vel",train.velocity)
-
+ atprint("in train_step_b: Current index",train.index,"end",train.end_index,"vel",v0)
--- 3a. calculate the acceleration required to reach the speed restriction in path_speed (LZB) ---
- -- Iterates over the path nodes we WOULD pass if we were continuing with the speed assumed by actual_lever
+ -- Iterates over the path nodes we WOULD pass if we were continuing with the current speed
-- and determines the MINIMUM of path_speed in this range.
-- Then, determines acceleration so that we can reach this 'overridden' target speed in this step (but short-circuited)
local lzb_next_zero_barrier -- if defined, train should not pass this point as it's a 0-LZB
- local new_index_v_base -- which v was assumed when curr_tv was calculated
local new_index_curr_tv -- pre-calculated new train index in lzb check
-
- if not a_lever or a_lever > VLEVER_BRAKE then
- -- only needs to run if we're not yet braking anyway
- new_index_v_base = v0 + (advtrains.get_acceleration(train, tv_lever) * dtime)
- local dst_curr_v = new_index_v_base * dtime
- train.dist_moved_this_step = dst_curr_v
- new_index_curr_tv = advtrains.path_get_index_by_offset(train, train.index, dst_curr_v)
- local i = atfloor(train.index)
- local lzb_target
- local psp
- while true do
- psp = train.path_speed[i]
- if psp then
- lzb_target = lzb_target and math.min(lzb_target, psp) or psp
- if psp == 0 and not lzb_next_zero_barrier then
- atprint("in train_step_b: Found zero barrier: ",i)
- lzb_next_zero_barrier = i - LZB_ZERO_APPROACH_DIST
- end
+ local lzb_v_cap -- the maximum speed that LZB dictates
+
+ local dst_curr_v = v0 * dtime
+ new_index_curr_tv = advtrains.path_get_index_by_offset(train, train.index, dst_curr_v)
+ local i = atfloor(train.index)
+ local psp
+ while true do
+ psp = train.path_speed[i]
+ if psp then
+ lzb_v_cap = lzb_v_cap and math.min(lzb_v_cap, psp) or psp
+ if psp == 0 and not lzb_next_zero_barrier then
+ atprint("in train_step_b: Found zero barrier: ",i)
+ lzb_next_zero_barrier = i - LZB_ZERO_APPROACH_DIST
end
- if i > new_index_curr_tv then
- break
- end
- i = i + 1
end
-
- atprint("in train_step_b: LZB calculation yields newindex=",new_index_curr_tv," basev=",new_index_v_base," lzbtarget=",lzb_target,"zero_barr=",lzb_next_zero_barrier,"")
-
- if lzb_target and lzb_target <= v0 then
- -- apply to tv_target after the actual calculation happened
- a_lever = VLEVER_BRAKE
- if tv_target and tv_target > lzb_target then
- if lzb_target < LZB_ZERO_APPROACH_SPEED and lzb_next_zero_barrier then
- if train.index >= lzb_next_zero_barrier then
- tv_target = 0
- a_lever = VLEVER_BRAKE
- atprint("in train_step_b: -!- Hit zero approach barrier -!- applying brake")
- --atdebug("zeroappr cancelling train has passed idx=",train.index, "za_idx=",lzb_zeroappr_target_index)
- else
- -- if we are in front of a zero barrier, make sure we reach it by
- -- keeping the velocity at a small value >0
- atprint("in train_step_b: In zero approach, applying ZERO_APPROACH_SPEED")
- tv_target = LZB_ZERO_APPROACH_SPEED
- end
- else
- atprint("in train_step_b: applying LZB brake to",lzb_target)
- tv_target = lzb_target
- end
- end
- -- Case: v0 is below lzb_target, but a_lever is ACCEL and resulting v would be greater than lzb_target
- -- limit tv_target to the lzb target.
- elseif lzb_target and a_lever >= VLEVER_ACCEL then
- tv_target = lzb_target
+ if i > new_index_curr_tv then
+ break
end
+ i = i + 1
+ end
+
+ if lzb_next_zero_barrier and train.index < lzb_next_zero_barrier then
+ lzb_v_cap = LZB_ZERO_APPROACH_SPEED
end
- --- 3b. now that we know tv_target and a_lever, calculate effective new v and change it on train
- atprint("in train_step_b: Final control: target",tv_target,"lever",a_lever)
+ atprint("in train_step_b: LZB calculation yields newindex=",new_index_curr_tv,"lzbtarget=",lzb_v_cap,"zero_barr=",lzb_next_zero_barrier,"")
- local dv = advtrains.get_acceleration(train, a_lever) * dtime
- local v1
- local tv_effective = false
- if tv_target and (math.abs(dv) > math.abs(tv_target - v0)) then
- atprint("in train_step_b: hit tv_target ",tv_target,"with v=",v0, "dv=",dv)
- v1 = tv_target
- tv_effective = true
- else
- v1 = v0 +dv
+ -- We now need to bring ctrl_*, sit_v_cap and lzb_v_cap together to determine the final controls.
+ local v_cap = sit_v_cap -- always defined, by default train.max_speed
+ if lzb_v_cap and lzb_v_cap < v_cap then
+ v_cap = lzb_v_cap
+ lever = VLEVER_BRAKE -- actually irrelevant, acceleration is not considered anyway unless v_tar is also set.
end
- --train.debug = "tv_target="..(tv_target or "nil").." v0="..v0.." v1="..v1
- if v1 > train.max_speed then
- v1 = train.max_speed
+ v_tar = ctrl_v_tar
+ -- if v_cap is smaller than the current speed, we need to brake in all cases.
+ if v_cap < v0 then
+ braking = true
+ lever = VLEVER_BRAKE
+ -- set v_tar to v_cap to not slow down any further than required.
+ -- unless control wants us to brake too, then we use control's v_tar.
+ if not ctrl_v_tar or ctrl_v_tar > v_cap then
+ v_tar = v_cap
+ end
+ else -- else, use what the ctrl says
+ braking = ctrl_braking
+ accelerating = ctrl_accelerating and not braking
+ lever = ctrl_lever
end
- if v1 < 0 then
- v1 = 0
+ train.lever = lever
+
+ atprint("in train_step_b: final control: accelerating",accelerating,"braking",braking,"lever", lever, "target", v_tar)
+
+ -- reset train acceleration when holding speed
+ if not braking and not accelerating then
+ train.acceleration = 0
end
- train.acceleration = (v1 - v0) / dtime
- train.velocity = v1
- atprint("in train_step_b: New velocity",v1," (yields acceleration",train.acceleration,")")
+ --- 3b. if braking, modify the velocity BEFORE the movement
+ if braking then
+ local dv = advtrains.get_acceleration(train, lever) * dtime
+ local v1 = v0 + dv
+ if v_tar and v1 < v_tar then
+ atprint("in train_step_b: Braking: Hit v_tar!")
+ v1 = v_tar
+ end
+ if v1 > v_cap then
+ atprint("in train_step_b: Braking: Hit v_cap!")
+ v1 = v_cap
+ end
+ if v1 < 0 then
+ atprint("in train_step_b: Braking: Hit 0!")
+ v1 = 0
+ end
+
+ train.acceleration = (v1 - v0) / dtime
+ train.velocity = v1
+ atprint("in train_step_b: Braking: New velocity",v1," (yields acceleration",train.acceleration,")")
+ -- make saved new_index_curr_tv invalid because speed has changed
+ new_index_curr_tv = nil
+ end
--- 4. move train ---
-- if we have calculated the new end index before, don't do that again
- if not new_index_v_base or new_index_v_base ~= v1 then
- local tv_vdiff = advtrains.get_acceleration(train, tv_lever) * dtime
- local dst_curr_v = v1 * dtime
- train.dist_moved_this_step = dst_curr_v
+ if not new_index_curr_tv then
+ local dst_curr_v = train.velocity * dtime
new_index_curr_tv = advtrains.path_get_index_by_offset(train, train.index, dst_curr_v)
atprint("in train_step_b: movement calculation (re)done, yields newindex=",new_index_curr_tv)
else
@@ -598,6 +574,24 @@ function advtrains.train_step_b(id, train, dtime)
recalc_end_index(train)
atprint("in train_step_b: New index",train.index,"end",train.end_index,"vel",train.velocity)
+
+ --- 4a. if accelerating, modify the velocity AFTER the movement
+ if accelerating then
+ local dv = advtrains.get_acceleration(train, lever) * dtime
+ local v1 = v0 + dv
+ if v_tar and v1 > v_tar then
+ atprint("in train_step_b: Accelerating: Hit v_tar!")
+ v1 = v_tar
+ end
+ if v1 > v_cap then
+ atprint("in train_step_b: Accelerating: Hit v_cap!")
+ v1 = v_cap
+ end
+
+ train.acceleration = (v1 - v0) / dtime
+ train.velocity = v1
+ atprint("in train_step_b: Accelerating: New velocity",v1," (yields acceleration",train.acceleration,")")
+ end
end
function advtrains.train_step_c(id, train, dtime)