1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
-- lzb.lua
-- Enforced and/or automatic train override control, providing the on_train_approach callback
--[[
Documentation of train.lzb table
train.lzb = {
trav = Current index that the traverser has advanced so far
oncoming = table containing oncoming signals, in order of appearance on the path
{
pos = position of the point
idx = where this is on the path
spd = speed allowed to pass
fun = function(pos, id, train, index, speed, lzbdata)
-- Function that determines what to do on the train in the moment it drives over that point.
}
}
each step, for every item in "oncoming", we need to determine the location to start braking (+ some safety margin)
and, if we passed this point for at least one of the items, initiate brake.
When speed has dropped below, say 3, decrease the margin to zero, so that trains actually stop at the signal IP.
The spd variable and travsht need to be updated on every aspect change. it's probably best to reset everything when any aspect changes
]]
local params = {
BRAKE_SPACE = 10,
AWARE_ZONE = 50,
ADD_STAND = 2.5,
ADD_SLOW = 1.5,
ADD_FAST = 7,
ZONE_ROLL = 2,
ZONE_HOLD = 5, -- added on top of ZONE_ROLL
ZONE_VSLOW = 3, -- When speed is <2, still allow accelerating
DST_FACTOR = 1.5,
SHUNT_SPEED_MAX = advtrains.SHUNT_SPEED_MAX,
}
function advtrains.set_lzb_param(par, val)
if params[par] and tonumber(val) then
params[par] = tonumber(val)
else
error("Inexistant param or not a number")
end
end
local function look_ahead(id, train)
local acc = advtrains.get_acceleration(train, 1)
local vel = train.velocity
local brakedst = ( -(vel*vel) / (2*acc) ) * params.DST_FACTOR
local brake_i = advtrains.path_get_index_by_offset(train, train.index, brakedst + params.BRAKE_SPACE)
--local aware_i = advtrains.path_get_index_by_offset(train, brake_i, AWARE_ZONE)
local lzb = train.lzb
local trav = lzb.trav
--train.debug = lspd
while trav <= brake_i do
trav = trav + 1
local pos = advtrains.path_get(train, trav)
-- check offtrack
if trav > train.path_trk_f then
table.insert(lzb.oncoming, {
pos = pos,
idx = trav-1,
spd = 0,
})
else
-- run callbacks
-- Note: those callbacks are defined in trainlogic.lua for consistency with the other node callbacks
advtrains.tnc_call_approach_callback(pos, id, train, trav, lzb.data)
end
end
lzb.trav = trav
end
--[[
The .i element is the index at which LZB overrides the train control with the
lever specified by the index value. The .v element is the speed at which the
train control is taken over by LZB with the lever specified by the index. The .t
element calculates the time needed for the train to reach the point where the
control is taken over by LZB with the lever specified by the index. Unintialized
.v and .t values indicate that the train has passed the point with the
corresponding index. Note that thhe 0th item contains the data related to the
LZB point itself, and not related to the emergency brake.
]]
function advtrains.lzb_map_entry(train, lzb)
local ret = {[0]={},[1]={},[2]={},[3]={}}
if (not train) or (not lzb) then return ret end
local ti = train.index
local v0 = train.velocity
local v1 = lzb.spd
local a = advtrains.get_acceleration(train, train.lever)
local s = (v1*v1-v0*v0)/2/advtrains.get_acceleration(train, 1)
if v0 > 3 then s = s + params.ADD_FAST
elseif v0 <=0 then s = s + params.ADD_STAND
else s = s + params.ADD_SLOW
end
ret[0].i = lzb.idx
ret[1].i = advtrains.path_get_index_by_offset(train, ret[0].i, -s)
ret[2].i = advtrains.path_get_index_by_offset(train, ret[1].i, -params.ZONE_ROLL)
ret[3].i = advtrains.path_get_index_by_offset(train, ret[2].i, -params.ZONE_HOLD)
if a == 0 then ret[3].t = (ret[3].i)/v0
else
ret[3].t = advtrains.solve_quadratic_equation(a/2, v0, (ti-ret[3].i))
if not ret[3].t then ret[3].t = 0
else
if ret[3].t[1]<0 then
if ret[3].t[2]<0 then ret[3].t = ret[3].t[2]
else ret[3].t = math.abs(math.max(ret[3].t[1], ret[3].t[2]))
end
else
if ret[3].t[2]<0 then ret[3].t = ret[3].t[1]
else ret[3].t = math.min(ret[3].t[1], ret[3].t[2])
end
end
end
end
ret[3].v = (v0 + a*ret[3].t)
if ret[3].v <= lzb.spd then ret[3].v = lzb.spd end -- Avoid devision by zero
if ret[3].v > (train.max_speed or 10) then ret[3].v = train.max_speed or 0 end
ret[2].v = ret[3].v
ret[2].t = (ret[3].i-ret[2].i)/ret[3].v
ret[1].t = advtrains.solve_quadratic_equation(advtrains.get_acceleration(train,2),ret[2].v,(ret[2].i-ret[1].i))
if not ret[1].t then ret[1].t = 0
else
if ret[1].t[1]<0 then
if ret[1].t[2]<0 then ret[1].t = ret[1].t[2]
else ret[1].t = math.abs(math.max(ret[1].t[1], ret[1].t[2]))
end
else
if ret[1].t[2]<0 then ret[1].t = ret[1].t[1]
else ret[1].t = math.min(math.max(ret[1].t[1], ret[1].t[2]))
end
end
end
ret[1].v = (ret[2].v + advtrains.get_acceleration(train,2)*ret[1].t)
if ret[1].v <= lzb.spd then ret[1].v = lzb.spd end
ret[0].v = lzb.spd
ret[0].t = (ret[0].v-ret[1].v)/advtrains.get_acceleration(train,1)
return ret
end
--[[
advtrains.lzb_get_limit_by_entry - get the limit
Returns a table contraining the speed and the acceleration limits
]]
function advtrains.lzb_get_limit_by_entry(train, lzb)
local ret = {}
local lzbmap = advtrains.lzb_map_entry(train, lzb)
if not (lzbmap[3].i and lzbmap[2].i and lzbmap[1].i and lzbmap[0].i) then
return {}
elseif (lzbmap[3].i > train.index) then return {}
elseif (lzbmap[2].i > train.index) then ret.lever = 3
elseif (lzbmap[1].i > train.index) then ret.lever = 2
else ret.lever = 1
end
if ret.lever == 3 then ret.velocity = lzbmap[3].v
else
local s = train.index - lzbmap[ret.lever].i
local a = advtrains.get_acceleration(train, ret.lever)
local v0 = lzbmap[ret.lever].v
ret.velocity = math.sqrt(2*a*s - v0*v0)
end
if ret.velocity < train.velocity -1 then ret.lever = ret.lever - 1 end
return ret
end
-- Get next LZB restriction with the lowest speed restriction
function advtrains.lzb_get_next(train)
if lever == 4 then return nil end
local lzb = train.lzb
local i = 1
local ret
local a = advtrains.get_acceleration(train, 3) -- Acceleration
local v0 = train.velocity
-- Remove LZB entries that are no longer valid
while i <= #lzb.oncoming do
if lzb.oncoming[i].idx < train.index then
local ent = lzb.oncoming[i]
if ent.fun then
ent.fun(ent.pos, id, train, ent.idx, ent.spd, lzb.data)
end
table.remove(lzb.oncoming, i)
else
i = i + 1
end
end
-- Now run through all the LZB entries and find the one with the lowest
-- speed requirement
for _, it in ipairs(lzb.oncoming) do
local v1 = it.spd
if v1 and v1 <= v0 then
local curlimit = advtrains.lzb_get_limit_by_entry(train, it)
local retlimit = advtrains.lzb_get_limit_by_entry(train, ret)
if not ret then ret = it
elseif not curlimit.velocity then
elseif retlimit.velocity > curlimit.velocity then
ret = it
end
end
end
return ret
end
local function invalidate(train)
train.lzb = {
trav = atfloor(train.index),
data = {},
oncoming = {},
}
end
function advtrains.lzb_invalidate(train)
invalidate(train)
end
-- Add LZB control point
-- udata: User-defined additional data
function advtrains.lzb_add_checkpoint(train, index, speed, callback, udata)
local lzb = train.lzb
local pos = advtrains.path_get(train, index)
table.insert(lzb.oncoming, {
pos = pos,
idx = index,
spd = speed,
fun = callback,
udata = udata,
})
end
advtrains.te_register_on_new_path(function(id, train)
invalidate(train)
look_ahead(id, train)
end)
advtrains.te_register_on_update(function(id, train)
if not train.path or not train.lzb then
atprint("LZB run: no path on train, skip step")
return
end
look_ahead(id, train)
end, true)
|