aboutsummaryrefslogtreecommitdiff
path: root/advtrains_line_automation/railwaytime.lua
blob: 1c6e31f05bf1110ff5c9018e3400897f23485c32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
-- railwaytime.lua
-- Advtrains uses a desynchronized time for train movement. Everything is counted relative to this time counter.
-- The advtrains-internal time is in no way synchronized to the real-life time, due to:
-- - Lag
-- - Server stops/restarts
-- However, this means that implementing a "timetable" system using the "real time" is not practical. Therefore,
-- we introduce a custom time system, the RWT(Railway Time), which has nothing to do with RLT(Real-Life Time)
-- RWT has a time cycle of 1 hour. This should be sufficient for most train lines that will ever be built in Minetest.
-- A RWT looks like this:    37;25
-- The ; is to distinguish it from a normal RLT (which has colons e.g. 12:34:56). Left number is minutes, right number is seconds.
-- The minimum RWT is 00;00, the maximum is 59;59.
-- It is OK to leave one places out at either end, esp. when writing relative times, such as:
-- 43;3   22;0   2;30   0;10  ;10
-- Those places are then filled with zeroes. Indeed, ";" would be valid for 00;00 .

--[[
1;23;45 = {
	s=45,
	m=23,
	c=1, -- Cycle(~hour), not displayed most time
}

]]

local rwt = {}

--Time Stamp (Seconds since start of world)
local e_time = 0

-- Current rw time, cached and updated each step
local crwtime

function rwt.set_time(t)
	e_time = t or 0
end

function rwt.get_time()
	return e_time
end

function rwt.step(dt)
	e_time = e_time + dt
end

function rwt.now()
	return rwt.from_sec(e_time)
end

function rwt.new(c, m, s)
	return {
		c = c or 0,
		m = m or 0,
		s = s or 0
	}
end
function rwt.copy(rwtime)
	return {
		c = rwtime.c or 0,
		m = rwtime.m or 0,
		s = rwtime.s or 0
	}
end

function rwt.from_sec(stime)
	local res = {}
	local seconds = atfloor(stime)
	res.s = seconds % 60
	local minutes = atfloor(seconds/60)
	res.m = minutes % 60
	res.c = atfloor(minutes/60)
	return res
end

function rwt.to_sec(rwtime, c_over)
	return (c_over or rwtime.c)*60*60 + rwtime.m*60 + rwtime.s
end

function rwt.add(t1, t2)
	local t1s = rwt.to_sec(t1)
	local t2s = rwt.to_sec(t1)
	return rwt.from_sec(t1s + t2s)
end

function rwt.add_secs(t1, t2s)
	local t1s = rwt.to_sec(t1)
	return rwt.from_sec(t1s + t2s)
end

-- How many seconds FROM t1 TO t2
function rwt.diff(t1, t2)
	local t1s = rwt.to_sec(t1)
	local t2s = rwt.to_sec(t1)
	return t2s - t1s
end

-- Subtract t2 from t1 (inverted argument order compared to diff())
function rwt.sub(t1, t2)
	return rwt.from_sec(rwt.diff(t2, t1))
end

-- Adjusts t2 by thresh and then returns time from t1 to t2
function rwt.adj_diff(t1, t2, thresh)
	local newc = rwt.adjust_cycle(t2, thresh, t1)
	local t1s = rwt.to_sec(t1)
	local t2s = rwt.to_sec(t2, newc)
	return t1s - t2s
end



-- Threshold values
-- "reftime" is the time to which this is made relative and defaults to now.
rwt.CA_FUTURE	= 60*60 - 1		-- Selected so that time lies at or in the future of reftime (at nearest point in time)
rwt.CA_FUTURES	= 60*60 		-- Same, except when times are equal, advances one full cycle
rwt.CA_PAST		= 0				-- Selected so that time lies at or in the past of reftime
rwt.CA_PASTS	= -1	 		-- Same, except when times are equal, goes back one full cycle
rwt.CA_CENTER	= 30*60			-- If time is within past 30 minutes of reftime, selected as past, else selected as future.

-- Adjusts the "cycle" value of a railway time to be in some relation to reftime.
-- Returns new cycle
function rwt.adjust_cycle(rwtime, reftime_p, thresh)
	local reftime = reftime_p or rwt.now()
	
	local reftimes = rwt.to_sec(reftime)
	
	local rwtimes = rwt.to_sec(rwtime, 0)
	local timeres = reftimes + thresh - rwtimes
	local cycles = atfloor(timeres / (60*60))

	return cycles
end

function rwt.adjust(rwtime, reftime, thresh)
	local cp = rwt.copy(rwtime)
	cp.c = rwt.adjust(rwtime, reftime, thresh)
	return cp
end

function rwt.to_string(rwtime, no_cycle, places)
	local pl = places or 2
	if (rwtime.c~=0 or pl>=3) and not no_cycle then
		return string.format("%d;%02d;%02d", rwtime.c, rwtime.m, rwtime.s)
	elseif rwtime.m~=0 or pl>=2 then
		return string.format("%02d;%02d", rwtime.m, rwtime.s)
	else
		return string.format(";%02d",rwtime.s)
	end
	return str
end

-- Useful for departure times: returns time (in seconds)
-- until the next (adjusted FUTURE) occurence of deptime is reached
-- in this case, rwtime is used as reftime and deptime should lie in the future of rwtime
-- rwtime defaults to NOW
function rwt.get_time_until(deptime, rwtime_p)
	local rwtime = rwtime_p or rwt.now()
	return rwt.adj_diff(rwtime, deptime, rwt.CA_FUTURE)
end



advtrains.lines.rwt = rwt